New solutions to the
Energy Crisis?

Summer Series Lecture
1 August, 2005



*The possibility (likelihood) of
global warming and its
consequences

- Possible solutions



Departures in temperature (°C)

Variations of the Earth's surface temperature for:
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140 years Is nothing by geological time
scales!



Temperature over the last 420,000 years

Source: Working Group | of the Intergovernmental Panel on Climate Change
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Keeling atmospheric
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Can we predict climate change due to
Increased greenhouse gases?

“Predictions are hard to make,
especially about the future.”



Concentration of Greenhouse gases
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Temperature anomalies (“C)
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Can we predict the past?
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CO, Concentration, Temperature, and Sea Level
Continue to Rise Long after Emissions are Reduced

CGC, emissions peak
O to 100 years

|
1,000 years

Sea-level rise due to ice
melting: several
millennia

Sea-level rise due to
thermal expansion:
centuries to millennia

Temperature stabilization:
a few centuries

CO, stabilization:
100 to 300 years

CO, emissions



Climate governs

Damage from storms, floods, wildfires

Property losses from sea-level rise

Productivity of farms, forests, & fisheries
Livability of cities in summer
Distribution & abundance of species

Geography of disease



Grinell Glacier
and Grinnell Lake,
Glacier National
Park, 1910-1997

Proposed name

change: Raor
Non-Glacier et
National Park. j =20



Larson B
Ice shelf
break-up,

Antarctica,
2002



Greenland is melting
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Bleached coral head: Bleaching occurs when high
water temperature Kkills the living organisms in the coral,
leaving behind only the calcium carbonate skeleton.




The great weather and flood catastrophes

over the last forty years
Losses in US billion dollars
Decade 1960-1569 Decade 1670-1979 Decace 1990-1883 Last ten years 1066-1547
- Total econormic lossas  Insured losses {
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Area Burned (million acres)
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Annual Area of Northern Boreal
Forest Burned in North America

Annual

1 0-year average

The Alaskan boreal forest is a small part of an enormous forest that extends

continuously across the northern part of North America. The average area of
this forest burned annually has more than doubled since 1970,




Satellite photo of smoke from S California wildfires, October 2003




Average Summer Mortality Rates
Attributed to Hot Weather Episodes
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South Florida
Shoreline Change after a
T1-Meter Rise in Sea Level
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Atmospheric Stabilization Emissions Paths
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== Business As Usual

750 ppm ceiling

550 ppm ceiling =
2 X Pre-Industrial CO
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Computer
simulations by the
Princeton
Geophysical Fluid
Dynamics Lab for
COZ2 increases above
pre-industrial
revolution levels:

2xCO,:5-8°F
4x CO, : 15-25° F

Pre-industrial:

~275 ppm
Today:

~380 ppm




Summer soill

moisture in N

America under
doubled &

quadrupled CO,

(from the Princeton
GFDL model)

Mid-continent soill-

moisture reductions
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World demand of energy resources
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M. King Hubbert Predicted in 1959 that U.S.
Domestic Production would Peak in 1970

Production in the Lower 48 States
Peak discovery: 1930
Peak production: 1972
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Hubbert Curves with different assumptions of rate of decline
using GSGS and DOE best estimates of total discovered and
undiscovered global reserves
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International Energy Agency (IEA)

Carbon

Emission forecast

Between 2003-2030:

New Coal P
New Natura

ants=14TW
Gas Plants =1.9 TW

The projected carbon emission in the next
30 years we will add 3x more CO, emission
than the previous 250 years!

Energy from tar sands and shale oil will
be as bad for CO, emissions as coal .






*The possibility (likelihood) of
global warming and its
consequences

- Possible solutions



Potential Sources of Energy when
Fossil Fuels Run Out

Nuclear Magnetic Plasma
Fusion Confinement,
Inertial Fusion
Waste &
Nuclear Proliferation
Nuclear
Fission 3 TW = One new GW

reactor every week for
the next 50 years)




Waste production of plutonium, minor
actinides, long-lived fission products

100

Radiotoxic inventory [Sv/g]
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There is hope: re-cycle fuel and research
how to efficiently convert (via fission)
long-lived nuclear waste into shorter-

ived radioactive products
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Solar Energy: Photo-voltaic cells




Cost, ¢/kW-hr

Today: Production Cost of Electricity
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Solar Energy: Wind




Wind Power Generation

50 30,000
40 \ 24,000
= 30 18,000
E s
= =
g 20 12,000
°
10 6,000
Cost of
_0 generation
L with gas
1980 1990 2000

B Installed Capacity B Cost



Solar Energy: Hydro-electric as
energy storage of electricity?




Solar to Chemical Energy

CO

Sugar

H,0

O,

Semiconductor/ Photovoltaic

liquid junctions = electricity
= chemical

Photosynthesis



Photosynthesis: Nature has found a way to

convert sunlight, CO,, water and nutrients
iInto chemical energy



http://en.wikipedia.org/wiki/Image:Leaf1web.jpg
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The nanotechnology challenges:

*Absorption of light and charge
separation (easy)

e Charge transfer (molecular)
transport (harder)

e Chemical conversion (the hardest
part)



The majority of a plant is structural material

Cellulose 40-60% Percent Dry Weight
Hemicellulose 20-40%
Lignin 10-25%
Sunlight
CO, H.,0 ; Chemical
2’ == | Bijomass | == oner
Nutrients Iy
A
- N

Self-fertilizing,
drought and pest
resistant






Net energy produced by growing
corn for ethanol

Wang et al., 1997

Shapouri et al., 2002

Patzek, 2004

Berthiaume et al., 2001+~ -~

Pimentel, 2003
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Total CO, emissions of common fuels
and corn production
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Sugar cane




Switchgrass




The majority of a plant is structural material

Cellulose 40-60% Percent Dry Weight
Hemicellulose 20-40%
Lignin 10-25%
Sunlight
CO, H,0 . Chemical
2’ e —> | Biomass | = oner
Nutrients Y
A A
4 ) Improved

Self-fertilizing,
drought and pest
resistant

conversion of
cellulose Into
chemical fuel



Commercial ethanol production from cellulose
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Microbulbifer degradans

A group of microorganisms that degrades of a
significant portion of the 50+ billion tons of cellulose




Synthetic Biology:

===Production of artemisinin in bacteria

Can synthetic organisms be

engineered to produce
W, ethanol, methanol or methane * =
| from cellulose?
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Can we modify existing organisms or design
new ones to directly produce energy?

Sunlight
cO, H,0 —> | Biomass | =

Chemical
energy

Nutrients




A diversified portfolio of investments is needed

A solution may lie at the interface of biology
and
the physical sciences at the nano-scale



and Internationg|

National/\Concerns

1) National security which is intimately tied to
energy security

2) Economic prosperity

3) The environment

Sustainable, CO, neutral energy



Should we start an
% “Apollo Project” to
solve the energy
problem?




B
ell Laboratories
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Theoretical and experimental physics 58
- Electronie structure of

semiconductors
~ Electronic surface states
- p-h junctions




"All the early lasers were developed first
at industrial research organizations... what
was heeded was a big support organization
which could focus different technologies on
a common goal. At American Universities,
you plod along with small groups of
specialists.”
Nico Bloembergen,
On why he never tried to build the first laser
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_% 80 empi._,o ees, "~ $500|v| budget

: 10 out of the 14 Nobel Prlze winners In science
at Berkeley were/are employees of LBNL

Currently, there are ~59 employees in the
National Academy of Sciences, :

18 in the National Academy of Engineering,
2 1n the Instltute of Medicine
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~ 25% of the Lawrence Berkeley Lab budget is
In the biological and biophysical sciences

Biological and Environmental
Research ($75M)

Basic Energy
Sciences ($110M)

N\

National Institutes
of Health ($44M)

Work for Others | — Math and Computing
(exc|uding N|H) —_— Sciences ($65M)
($66M)

~— High Energy Physics
Other DOE ($40M) ~ 9 ($43M)
\ Nuclear Physics ($18M)

Fossil Energy ($5M)//
Fusion Energy Sciences ($6M)

Yucca Mtn. ($10M)

Energy Efficiency &
Renewables ($26M)



Integration of many disciplines will be needed

Nanoscience

Computing

Sciences /
as/

Life

Materials :
Sciences

Science

New ide

Chemical Fuel From Solar Energy
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